Models reflectance spectra in a colorspace. For information on plotting
arguments and graphical parameters, see plot.colspace()
.
colspace(
vismodeldata,
space = c("auto", "di", "tri", "tcs", "hexagon", "coc", "categorical", "ciexyz",
"cielab", "cielch", "segment"),
qcatch = NULL,
...
)
(required) quantum catch color data. Can be either the
result from vismodel()
or independently calculated data (in the form of a
data frame with columns representing quantum catches).
Which colorspace/model to use. Options are:
auto
: if data is a result from vismodel()
, applies di
, tri
or tcs
if input visual model had two, three or four cones, respectively.
di
: dichromatic colourspace. See dispace()
for details.
(plotting arguments)
tri
: trichromatic colourspace (i.e. Maxwell triangle). See trispace()
for details. (plotting arguments)
tcs
: tetrahedral colourspace. See tcspace()
for details.
(plotting arguments)
hexagon
: the trichromatic colour-hexagon of Chittka (1992). See
hexagon()
for details. (plotting arguments)
coc
: the trichromatic colour-opponent-coding model of Backhaus (1991).
See coc()
for details. (plotting arguments)
categorical
: the tetrachromatic categorical fly-model of Troje (1993).
See categorical()
for details. (plotting arguments)
ciexyz
: CIEXYZ space. See cie()
for details.
(plotting arguments)
cielab
: CIELAB space. See cie()
for details.
(plotting arguments)
cielch
: CIELCh space. See cie()
for details.
(plotting arguments)
segment
: segment analysis of Endler (1990). See segspace()
for details.
(plotting arguments)
Which quantal catch metric is being inputted. Only used when
input data is NOT an output from vismodel()
. Must be Qi
, fi
or Ei
.
additional arguments passed to cie()
for non vismodel()
data.
Smith T, Guild J. (1932) The CIE colorimetric standards and their use. Transactions of the Optical Society, 33(3), 73-134.
Westland S, Ripamonti C, Cheung V. (2012). Computational colour science using MATLAB. John Wiley & Sons.
Chittka L. (1992). The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. Journal of Comparative Physiology A, 170(5), 533-543.
Chittka L, Shmida A, Troje N, Menzel R. (1994). Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision research, 34(11), 1489-1508.
Troje N. (1993). Spectral categories in the learning behaviour of blowflies. Zeitschrift fur Naturforschung C, 48, 96-96.
Stoddard, M. C., & Prum, R. O. (2008). Evolution of avian plumage color in a tetrahedral color space: A phylogenetic analysis of new world buntings. The American Naturalist, 171(6), 755-776.
Endler, J. A., & Mielke, P. (2005). Comparing entire colour patterns as birds see them. Biological Journal Of The Linnean Society, 86(4), 405-431.
Kelber A, Vorobyev M, Osorio D. (2003). Animal colour vision - behavioural tests and physiological concepts. Biological Reviews, 78, 81 - 118.
Backhaus W. (1991). Color opponent coding in the visual system of the honeybee. Vision Research, 31, 1381-1397.
Endler, J. A. (1990) On the measurement and classification of color in studies of animal color patterns. Biological Journal of the Linnean Society, 41, 315-352.
data(flowers)
# Model a dichromat viewer in a segment colourspace
vis.flowers <- vismodel(flowers, visual = "canis")
di.flowers <- colspace(vis.flowers, space = "di")
# Model a honeybee viewer in the colour hexagon
vis.flowers <- vismodel(flowers,
visual = "apis", qcatch = "Ei", relative = FALSE,
vonkries = TRUE, achromatic = "l", bkg = "green"
)
hex.flowers <- colspace(vis.flowers, space = "hexagon")
# Model a trichromat (the honeybee) in a Maxwell triangle
vis.flowers <- vismodel(flowers, visual = "apis")
tri.flowers <- colspace(vis.flowers, space = "tri")
plot(tri.flowers)
# Model a tetrachromat (the Blue Tit) in a tetrahedral colourspace
vis.flowers <- vismodel(flowers, visual = "bluetit")
tcs.flowers <- colspace(vis.flowers, space = "tcs")
# Model a housefly in the 'categorical' colourspace
vis.flowers <- vismodel(flowers, visual = "musca", achro = "md.r1")
cat.flowers <- colspace(vis.flowers, space = "categorical")